Rate Law Analysis of Water Oxidation on a Hematite Surface

نویسندگان

  • Florian Le Formal
  • Ernest Pastor
  • S. David Tilley
  • Camilo A. Mesa
  • Stephanie R. Pendlebury
  • Michael Grätzel
  • James R. Durrant
چکیده

Water oxidation is a key chemical reaction, central to both biological photosynthesis and artificial solar fuel synthesis strategies. Despite recent progress on the structure of the natural catalytic site, and on inorganic catalyst function, determining the mechanistic details of this multiredox reaction remains a significant challenge. We report herein a rate law analysis of the order of water oxidation as a function of surface hole density on a hematite photoanode employing photoinduced absorption spectroscopy. Our study reveals a transition from a slow, first order reaction at low accumulated hole density to a faster, third order mechanism once the surface hole density is sufficient to enable the oxidation of nearest neighbor metal atoms. This study thus provides direct evidence for the multihole catalysis of water oxidation by hematite, and demonstrates the hole accumulation level required to achieve this, leading to key insights both for reaction mechanism and strategies to enhance function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes

The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that ...

متن کامل

The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.

Photoelectrochemical water oxidation on hematite has been extensively studied, yet the relationship between the various facets exposed, heteroatom doping, and associated electrocatalytic activity has not been adequately explored. Here, hematite nanocrystals were synthesized with continuous tuning of the aspect-ratio and fine control of the surface area ratio of the (0001) facet with respect to ...

متن کامل

Surface treatment of hematite photoanodes with zinc acetate for water oxidation.

A simple and inexpensive method to form a hematite photoanode for efficient water oxidation is reported. A very thin ZnO overlayer was deposited on top of a thin film of hematite and found, compared with non-treated hematite, to increase the photocurrent and reduce the onset potential for generating oxygen from water. After 3 cycles of ZnAc treatment, the photocurrent increased more than 40% to...

متن کامل

Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.

Numerous studies have shown that the performance of hematite photoanodes for light-driven water splitting is improved substantially by doping with various metals, including tin. Although the enhanced performance has commonly been attributed to bulk effects such as increased conductivity, recent studies have noted an impact of doping on the efficiency of the interfacial transfer of holes involve...

متن کامل

A Unified Picture of Water Oxidation on Bare and Gallium Oxide- Covered Hematite from Density Functional Theory

Hematite is a promising catalyst for the photoelectrochemical water oxidation reaction, which however displays a low overall efficiency. To improve it, a systematic understanding of the underlying photocatalytic mechanisms is desirable but difficult to obtain by experimental techniques alone. Here, we have investigated the oxidation of water on the most stable terminations of the bare hematite,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2015